基于偏最小二乘回归分析的试验装备修理成本预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

2009 年国家社会科学基金重大项目“国防建设科学发展重大问题研究”(09&ZD066)


Forecast of Tentative Equipment Repair Cost Based on Partial Least Squares Regression
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了科学预测试验装备修理成本,提高维修经费决策质量,引入偏最小二乘回归分析(Partial Least Squares Regression, PLSR)对试验装备修理成本进行预测。针对试验装备修理成本小样本、贫数据、特征量相关性强的不利 条件,构建预测模型;基于以往数次大修相关数据,预测试验专用装备使用期的某次大修成本。同时,为保持模型 的稳健性,提高模型解释能力和预测精确度,尝试利用变量投影重要性分析对模型进行优化,取得了较好的效果。 实例证明,该方法不仅能在多变量间存在严重多重相关性情况下建立模型,而且能够有效筛选与因变量关系不大的 自变量,简化输入样本集。

    Abstract:

    In order to forecast tentative equipment’s repair cost scientifically, and improve the decision-making quality of maintenance outlay, partial least squares regression (PLSR) is introduced to forecast tentative equipment’s repair cost. Aiming at the limitation of tentative equipment repair cost’s small sample, inadequate statistics, close relative eigenvector, forecasting model is constructed; based on several heavy repair data before, the heavy repair cost of special tentative equipment in use is forecasted. Meanwhile, it has the good effect to attempt optimizing the model by using variable importance in projection (VIP) in order to keep the model’s stability and improve its explaining ability and forecasting accuracy. It is proved by examples that this method can not only construct models in the case that high multi-correlation exist between variables, but also filter effectively independent variable which is of little relation to dependent variable, and simplify sample set.

    参考文献
    相似文献
    引证文献
引用本文

张翀,郑绍钰,王璐璐.基于偏最小二乘回归分析的试验装备修理成本预测[J].,2010,29(12):1-5.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-01-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码