基于扩展卡尔曼滤波器的路面附着系数辨识算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Identification Algorithm of Road Adhesion Coefficient Based on Extended Kalman Filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效解决现有的路面峰值附着系数估计方法在非结构性路面估计精度较差的难题,提出一种在非结构性路面下基于扩展卡尔曼滤波器的路面峰值附着系数估计方法。通过常用的车载传感器采集车辆位姿和车轮转角等车辆运动响应信号,在传统车辆模型中引入等效悬架模型计算车轮垂向载荷等运动参数;并将参数作为输入,通过Dugoff轮胎模型计算扩展卡尔曼滤波器的系数矩阵;引入等效悬架模型优化车轮垂向载荷的计算以及结合车辆位姿数据对车辆加速度进行修正,提高对非结构路面下的路面附着系数辨识精度。通过在Carsim配置直线制动场景进行多工况仿真的结果表明:附着系数的估计精度提高6.6%以上,证明路面附着系数估计方法的有效性和准确性。

    Abstract:

    In order to effectively solve the problem of poor estimation accuracy of the existing road peak adhesion coefficient estimation method on the non-structural road surface, a road peak adhesion coefficient estimation method based on the extended Kalman filter under the non-structural road surface is proposed. Acquiring vehicle motion response signals such as a vehicle pose, a wheel rotation angle and the like through a common vehicle-mounted sensor, introducing an equivalent suspension model into a traditional vehicle model to calculate motion parameters such as a wheel vertical load and the like, taking the parameters as input, and calculating a coefficient matrix of an extended Kalman filter through a Dugoff tire model; An equivalent suspension model is introduced to optimize the calculation of the vertical load of the wheel, and the acceleration of the vehicle is corrected by combining the position and posture data of the vehicle, so that the identification accuracy of the road adhesion coefficient under the unstructured road surface is improved. The simulation results of multiple driving conditions in Carsim with straight line braking show that the estimation accuracy of adhesion coefficient is improved by more than 6.6%, which proves the effectiveness and accuracy of the road adhesion coefficient estimation method.

    参考文献
    相似文献
    引证文献
引用本文

张宏超.基于扩展卡尔曼滤波器的路面附着系数辨识算法[J].,2026,45(01).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-08
  • 最后修改日期:2024-12-18
  • 录用日期:
  • 在线发布日期: 2026-02-11
  • 出版日期:
文章二维码