基于模态分解融合改进BiGRU的光伏功率预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省研究生科研与实践创新计划项目基金(SJCX24_0465)


PV Power Prediction Based on Modal Decomposition Fusion with Improved BiGRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对军事能源调度中光伏功率预测的高精度需求,提出基于蜣螂优化(dung beetle optimization,DBO)算法融合注意力机制优化双向门控循环单元(bidirectional gated recurrent unit,BiGRU)的光伏功率预测方法。开展光伏出力影响因素和出力特性分析;通过完备经验模态分解对光伏功率数据进行多尺度分解,有效分离高频噪声与低频趋势分量;引入多头自注意力机制(multi-head self-attention,MHSA)增强模型对关键气象特征的动态聚焦能力,并结合蜣螂优化算法优化双向门控循环单元网络超参数,显著提升模型在复杂军事环境下的泛化性能。结果表明:该模型在MAE、RMSE和R2指标上均显著优于传统对比模型,具有良好的预测效果。

    Abstract:

    In order to meet the high precision requirement of PV power prediction in military energy scheduling, a dung beetle optimization (DBO) algorithm is proposed to integrate attention mechanism to optimize the bidirectional gated recurrent unit (BiGRU) photovoltaic power prediction method. Carry out analysis on influence factors and output characteristic of that photovoltaic power; carrying out multi-scale decomposition on the photovoltaic power data through complete empirical mode decomposition, and effectively separate high-frequency noise and low-frequency trend components; The multi-head self-attention (MHSA) mechanism is introduced to enhance the dynamic focusing ability of the model on key meteorological features, and the dung beetle optimization algorithm is combined to optimize the hyperparameters of the two-way gated recurrent unit network, which significantly improves the generalization performance of the model in complex military environments. The results show that the proposed model is significantly better than traditional comparison model in terms of MAE, RMSE and R2, and has a good prediction effect.

    参考文献
    相似文献
    引证文献
引用本文

花国祥.基于模态分解融合改进BiGRU的光伏功率预测[J].,2026,45(01).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-02
  • 最后修改日期:2024-12-15
  • 录用日期:
  • 在线发布日期: 2026-02-11
  • 出版日期:
文章二维码