基于KPCA-HDBO-KELM的装备金属结构件腐蚀速率预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Corrosion Rate Prediction of Equipment Metal Structure Based on KPCA-HDBO-KELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对腐蚀导致装备可靠性降低、战斗力减弱的问题,提出基于核极限学习机(kernel extreme learning machine,KELM)的装备结构件腐蚀速率预测模型。采用核主成分分析(kernel principal component analysis,KPCA)对原始数据进行预处理,再采用改进混合蜣螂优化(hybrid dung beetle optimizer,HDBO)算法对KELM中核参数和正则化系数进行寻优,引入Singer混沌映射改进蜣螂种群初始化分布位置;采用可变螺旋搜索策略改进产卵蜣螂和觅食蜣螂觅食位置更新过程,扩展蜣螂探索未知区域的能力;引入Levy飞行策略和自适应权重,增强算法的全局搜索和局部寻优能力。构建KPCA-HDBO-KELM装备金属结构件腐蚀速率预测模型。使用60组装备金属结构件腐蚀速率实验数据进行验证,并与其余3个模型对比。结果表明:KPCA-HDBO-KELM模型预测结果较其余模型更精准、稳定性更好,且MSE、MAE指标均优于对比模型,在预测装备结构件腐蚀速率方面有较高的稳定性和精度。

    Abstract:

    Aiming at the problem that the reliability and combat effectiveness of equipment are reduced due to corrosion, a corrosion rate prediction model for equipment components based on kernel extreme learning machine (KELM) is proposed. The kernel principal component analysis (KPCA) was used to preprocess the original data, and then the improved hybrid dung beetle optimization (HDBO) algorithm was used to optimize the kernel parameters and regularization coefficients in KELM, and the Singer chaotic map was introduced to improve the initial distribution position of dung beetle population; A variable spiral search strategy was used to improve the foraging position update process of the spawning dung beetle and foraging dung beetle, and to expand the ability of the beetle to explore the unknown area.Levy flight strategy and adaptive weight were introduced to enhance the global search and local optimization ability of the algorithm. The corrosion rate prediction model of KPCA-HDBO-KELM equipment was established. Sixty groups of experimental data of corrosion rate of equipment metal structures were used to verify and compare with the other three models. The results show that the KPCA-HDBO-KELM model is more accurate and stable than other models, and the MSE and MAE indicators are better than comparison model, which has high stability and accuracy in predicting the corrosion rate of equipment components.

    参考文献
    相似文献
    引证文献
引用本文

孙伟赫.基于KPCA-HDBO-KELM的装备金属结构件腐蚀速率预测[J].,2026,45(01).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-10
  • 最后修改日期:2024-12-15
  • 录用日期:
  • 在线发布日期: 2026-02-11
  • 出版日期:
文章二维码