基于深度强化学习的无人机辅助配送系统
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

新一代信息技术创新项目(2022IT208)


UAV Assisted Distribution System Based on Deep Reinforcement Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了使无人机能够在复杂的3维城市环境中,从起点到终点之间快速找到一条无事故、更短、更安全的飞行路径,设计一种动态环境下基于近端策略梯度优化(proximal policy optimization,PPO)的先进群体优化算法的无人机辅助配送系统,并提出了PPO-PSO算法。基于标准PPO算法和粒子群算法(particle swarm optimization,PSO)的特点,对PPO算法进行了新的改进;融入了长短时记忆(long short term memory,LSTM)、卷积神经网络(convolutional neural network,CNN),并利用粒子优化对智能体迭代方式进行修改,解决神经网络局部搜索能力差的问题;论证该算法的收敛性,并在Python环境下进行仿真,验证其有效性。模拟结果表明,PPO-PSO在收敛速度和求解速度上更优,且鲁棒性较好。

    Abstract:

    In order to make the unmanned aerial vehicle quickly find an accident-free, shorter and safer flight path from the starting point to the end point in the complex three-dimensional urban environment, An advanced swarm optimization algorithm based on proximal policy optimization (PPO) for unmanned aerial vehicle aided distribution system in dynamic environment is designed, and a PPO-PSO algorithm is proposed. Based on the characteristics of the standard PPO algorithm and the particle swarm optimization (PSO) algorithm, the PPO algorithm is improved; It integrates long short time memory (LSTM), convolutional neural network (CNN), and uses particle optimization to modify the iteration mode of agents, which solves the problem of poor local search ability of neural network; The convergence of the algorithm is demonstrated, and its effectiveness is verified by simulation in Python environment. The simulation results show that PPO-PSO is better in convergence speed and solution speed, and has better robustness.

    参考文献
    相似文献
    引证文献
引用本文

夏庆锋.基于深度强化学习的无人机辅助配送系统[J].,2025,44(12).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-06
  • 最后修改日期:2024-11-12
  • 录用日期:
  • 在线发布日期: 2025-12-29
  • 出版日期:
文章二维码