基于MTF-ResNet-CBAM的兵工装备轴承故障诊断方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

新能源电力系统全国重点实验室开放课题项目(LAPS23014);无锡学院引进人才科研启动专项(2022r021)


Fault Diagnosis Method for Military Equipment Bearings Based on MTF-ResNet-CBAM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统方法在噪声干扰和复杂工况下性能有限的问题,提出一种基于马尔可夫转移场(Markov transition field,MTF)、残差网络(residual network,ResNet)与卷积注意力机制(convolutional block attention module,CBAM)的轴承故障诊断方法。将1维振动信号映射为2维MTF图像,以保留时序依赖与动态特征;利用ResNet进行深层特征提取,通过CBAM在通道与空间维度自适应分配权重,强化关键信息表达、抑制冗余干扰。在4类典型工况(正常、内圈故障、外圈故障和滚动体故障)下进行实验验证。结果表明:该模型整体测试准确率达到96.67%,较VGG、AlexNet及CNN模型提升约8%~15%,该方法在兵工装备的复杂运行环境下能保持较高的诊断精度与稳定性。

    Abstract:

    In order to solve the problem that the traditional method has limited performance under noise interference and complex working conditions, a method based on Markov transition field (MTF), residual network (ResNet) and convolutional block attention module (CBAM). The 1-D vibration signal is mapped to a 2-D MTF image to retain the temporal dependence and dynamic features. ResNet is used to extract the deep features, and CBAM is used to adaptively assign weights in the channel and spatial dimensions to enhance the expression of key information and suppress redundant interference. The experimental verification is carried out under four typical working conditions (normal, inner ring fault, outer ring fault and rolling element fault). The results show that the overall test accuracy of the model reaches 96. 67%, which is about 8%~15% higher than that of VGG, AlexNet and CNN models, and the method can maintain high diagnostic accuracy and stability in the complex operating environment of ordnance equipment.

    参考文献
    相似文献
    引证文献
引用本文

李伟伟.基于MTF-ResNet-CBAM的兵工装备轴承故障诊断方法[J].,2025,44(12).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-06
  • 最后修改日期:2024-11-12
  • 录用日期:
  • 在线发布日期: 2025-12-29
  • 出版日期:
文章二维码