改进ORB-SLAM2算法的视觉地图构建方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Improved Visual Map Construction Method for ORB-SLAM2 Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决环境亮度变化情况下ORB-SLAM2算法无法稳定、准确地提取特征点,以及长直路段由于选取大量冗余关键帧导致构建的视觉地图很大的问题,提出一种改进ORB-SLAM2算法的视觉地图构建方法。通过自适应阈值特征点提取算法,利用图像灰度值离散程度自适应阈值提取特征点,增强系统抵抗环境亮度变化的能力;将帧间偏航角与距离作为关键帧筛选的条件,通过内点数动态更改关键帧筛选阈值,剔除冗余关键帧,轻量化视觉地图;基于KITTI数据集与智能车实验平台进行实验验证。实验结果表明:该方法能有效提高视觉地图构建的鲁棒性和准确性,地图存储容量减小50%以上。

    Abstract:

    In order to solve the problem of the ORB-SLAM2 algorithm being unable to extract feature points stably and accurately under changes in environmental brightness, as well as the problem of constructing large visual maps on long and straight road sections due to the selection of a large number of redundant keyframes, an improved visual map construction method based on the ORB-SLAM2 algorithm is proposed. By using an adaptive threshold feature point extraction algorithm and utilizing the degree of dispersion of image grayscale values to adaptively threshold feature points, the system's ability to resist changes in environmental brightness is enhanced; Using the inter frame yaw angle and distance as the criteria for keyframe filtering, dynamically changing the keyframe filtering threshold through the number of inliers, removing redundant keyframes, and lightweighting the visual map; Conduct experimental verification based on the KITTI dataset and intelligent vehicle experimental platform. The experimental results show that this method can effectively improve the robustness and accuracy of visual map construction, reducing map storage capacity by more than 50%.

    参考文献
    相似文献
    引证文献
引用本文

王帅帅.改进ORB-SLAM2算法的视觉地图构建方法[J].,2025,44(12).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-15
  • 最后修改日期:2024-11-09
  • 录用日期:
  • 在线发布日期: 2025-12-29
  • 出版日期:
文章二维码