一种双阶段电力数据异常分析模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


A Two-stage Model For Analyzing Anomalies in Power Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为改善现有电力异常检测时效率、精度低的问题,提出一种双阶段电力数据异常识别模型。模型由一步超前负荷预测器(one-step ahead load predictor,OSALP)和基于规则引擎的负荷异常检测器组成。OSALP结合线性自回归综合移动平均(autoregressive moving average,ARMA)和非线性人工神经网络(artificial neural networks,ANN)的优点,可有效提高模型负荷预测精度。基于规则引擎的负荷异常检测器集成支持向量机(support vector machines,SVM)、k邻近(k-nearest neighbor,kNN)方法和交叉熵损失函数等模型优点,可在不受预测结果影响下完成电力异常检测。实时检测结果表明:模型R2、均方根误差(root mean square error,RMSE)和F1分数指标分别为69.67%,5.03%和99.53%,明显优于随机森林(random forest,RF)、SVM、ANN以及长短时记忆(long short term memory,LSTM)等模型。

    Abstract:

    To solve the problem of low efficiency and accuracy in existing power anomaly detection, a two-stage power data anomaly recognition model is proposed. The model consists of a one-step ahead load predictor (OSALP) and a rule-engine-based load anomaly detector. The one-step ahead load predictor combines the advantages of autoregressive moving average (ARMA) and artificial neural networks (ANN), effectively improving the accuracy of load prediction. The rule-engine-based load anomaly detector integrates the strengths of models such as support vector machines (SVM), k-nearest neighbor (kNN), and the cross-entropy loss function, enabling power anomaly detection independent of prediction results. Real-time detection results show that the model achieves R2, RMSE, and F1 score metrics of 69.67%, 5.03%, and 99.53%, respectively, significantly outperforming models such as random forest (RF), SVM, ANN, and long short term memory (LSTM).

    参考文献
    相似文献
    引证文献
引用本文

刘 浩.一种双阶段电力数据异常分析模型[J].,2025,44(12).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-26
  • 最后修改日期:2024-11-23
  • 录用日期:
  • 在线发布日期: 2025-12-29
  • 出版日期:
文章二维码