基于高频数据共现聚类算法的异构网络信息增量式更新方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国绿发投资集团有限公司科技项目(CGDG529000220008)


Incremental Update Method for Heterogeneous Network Information Based on High-frequency Data Co-occurrence Clustering Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决异构网络信息聚类过程中存在数据漂移,且目前的增量更新方法不能识别伪相关数据的问题,提出一种基于高频数据共现聚类算法的异构网络信息增量式更新方法。利用漂移点偏差挖掘算法搜索数据集中的漂移点位置,将漂移点较多的数据集识别为异常数据并进行剔除。统计数据集中的数据属性同时标记相同数据集的频繁次数,采用关联特征选择算法提取代表性语素属性,提取与用户检索匹配度一致的真实信息进行增量式更新。实验结果表明,该方法能成功收敛漂移数据点,伪相关数据查准率为98.2%,具有较强的可行性。

    Abstract:

    In order to solve the problem of data drift in the information clustering process of heterogeneous networks and the inability of current incremental update methods to identify pseudo-relevant data, an incremental update method for heterogeneous network information based on a high-frequency data co-occurrence clustering algorithm is proposed. The drift point deviation mining algorithm is utilized to search for the locations of drift points in the dataset, identifying datasets with a high number of drift points as abnormal and subsequently removed. Data attributes in the dataset are statistically analyzed, and frequent occurrences within the same dataset are marked. An association feature selection algorithm is employed to extract representative morpheme attributes, and genuine information that matches user queries is extracted for incremental updates. Experimental results demonstrate that this method can successfully converge drift data points, achieving a pseudo-relevant data precision rate of 98.2%, indicating strong feasibility.

    参考文献
    相似文献
    引证文献
引用本文

李昌伟.基于高频数据共现聚类算法的异构网络信息增量式更新方法[J].,2025,44(12).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-26
  • 最后修改日期:2024-11-26
  • 录用日期:
  • 在线发布日期: 2025-12-29
  • 出版日期:
文章二维码