基于RSJSO_BiLSTM的高精度降雨预测模型研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on High-precision Rainfall Prediction Model Based on RSJSO_BiLSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高降雨预测的准确性和效率,提出一种基于双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)和鼠群水母群优化算法(rat swarm and jellyfish search optimizer,RSJSO)的降雨预测模型。利用缺失数据插补和特征融合技术对降雨数据进行预处理,通过弦距离和基于骑手优化算法的神经网络(rider optimization algorithm-based neural network,RideNN)优化特征提取过程,并采用过采样技术增强数据集。实验结果表明:该模型在多种评估指标上表现突出,能够为相关决策提供可靠的精细化降雨信息支撑,有效增强复杂场景下的突发事件响应能力。

    Abstract:

    In order to improve the accuracy and efficiency of rainfall forecasting, a network based on bi-directional long short-term memory (BiLSTM) and rat swarm and jellyfish search optimizer (RSJSO) is proposed. The rainfall data is preprocessed by using missing data interpolation and feature fusion technology, and the feature extraction process is optimized by chord distance and based on rider optimization algorithm and based neural network (RideNN). Oversampling techniques are used to enhance the dataset. The experimental results show that the model performs well in a variety of evaluation indicators, and can provide reliable support for the relevant decision-making of refined rainfall information, and effectively enhance the ability to respond to emergencies in complex scenarios.

    参考文献
    相似文献
    引证文献
引用本文

陈 亮.基于RSJSO_BiLSTM的高精度降雨预测模型研究[J].,2025,44(11).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-12
  • 最后修改日期:2024-11-18
  • 录用日期:
  • 在线发布日期: 2025-12-02
  • 出版日期:
文章二维码