基于多传感器融合和改进EfficientNetV2-B0的电机故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(42275156);江苏高校“青蓝工程”,教育部产学合作协同育人项目(202102224006);江苏省大学生创新创业项目(202213982017Z)


Motor Fault Diagnosis Based on Multi-sensor Fusion and Improved EfficientNetV2-B0
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电机在发生故障时故障信号易被强噪声淹没、信号采集不全面且训练网络冗杂的问题,将融合多传感器信号和改进EfficientNetV2-B0的迁移学习模型引入到电机故障诊断中。传感器融合方法通过格拉姆角场(Gramian angular field,GAF)将1维时间序列转换成图像,保证特征信息的完整性,没有时间依赖性,并利用Retinex增强和拉普拉斯金字塔分解的图像融合算法实现多源传感器信号的图像融合。针对EfficientNetV2-B0网络提出了添加深度可分离卷积(depthwise separable convolution,DSConv)和高效多尺度注意力(efficient multi-scale attention,EMA)的改进,并结合迁移学习(transfer learning,TL)技术建立电机故障诊断模型。对电机的各种工况进行分类和测试的结果表明:该方法能有效地对设备故障进行分类,对电机各种工况的识别平均准确率达100%。

    Abstract:

    In order to solve the problems that the fault signal is easily submerged by strong noise, the signal acquisition is not comprehensive and the training network is complex when the motor fault occurs, the transfer learning model based on multi-sensor signal fusion and the improved EfficientNetV2-B0 is introduced into the motor fault diagnosis. The sensor fusion method converts the 1D time series into images through the gramian angular field (GAF) to ensure the integrity of the feature information without time dependence, and uses the image fusion algorithm of Retinex enhancement and Laplacian pyramid decomposition to realize the image fusion of multi-source sensor signals. Adding depthwise separable convolution (DSConv) and efficient multi-scale attention (EMA) are proposed for the EfficientNetV2-B0 network, and combined with transfer learning (TL) technology to establish a motor fault diagnosis model. Various working conditions of the motor are classified and tested, and the results show that the method can effectively classify the equipment faults, and the average accuracy of the identification of various working conditions of the motor reaches 100%.

    参考文献
    相似文献
    引证文献
引用本文

朱思成.基于多传感器融合和改进EfficientNetV2-B0的电机故障诊断[J].,2025,44(11).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-09
  • 最后修改日期:2024-11-17
  • 录用日期:
  • 在线发布日期: 2025-12-02
  • 出版日期:
文章二维码