改进图注意力网络的弹头毁伤评估方法研究
DOI:
CSTR:
作者:
作者单位:

哈尔滨工程大学

作者简介:

通讯作者:

中图分类号:

基金项目:

泰山学者项目资助


Research on Warhead Damage Assessment Based on Improved Graph Attention Networks
Author:
Affiliation:

Harbin Engineering University

Fund Project:

supported by the Taishan Scholars Program

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    弹头毁伤效应评估是武器系统效能分析的关键问题,也是生存防护技术研究的重要依据。针对传统评估方法难以准确刻画目标系统各组件间的复杂依赖关系及级联失效传播机制问题,本文提出一种基于改进图注意力网络(GATv2)的弹头毁伤评估方法。该方法首先建立融合冲击波超压、破片和热辐射的多机理物理毁伤模型;然后将目标系统建模为加权有向图,采用GATv2网络学习组件间的动态依赖关系;并通过三维边特征增强模型的级联失效预测能力。在平原、森林和山地三种典型地形条件下的仿真实验结果表明,本方法能够准确预测不同距离和地形下的毁伤程度,毁伤半径预测误差控制在5%以内,显著优于传统的静态评估方法。

    Abstract:

    arhead damage effect assessment is a critical issue in weapon system effectiveness analysis and serves as an important foundation for survivability and protection technology research. Traditional assessment methods struggle to accurately characterize the complex interdependencies among target system components and the cascade failure propagation mechanisms. This paper proposes a warhead damage assessment method based on improved Graph Attention Networks (GATv2). The method first establishes a multi-mechanism physical damage model integrating shock wave overpressure, fragmentation, and thermal radiation effects. Subsequently, the target system is modeled as a weighted directed graph, and the GATv2 network is employed to learn the dynamic dependencies among components. Furthermore, three-dimensional edge features are incorporated to enhance the model's cascade failure prediction capability. Simulation experiments conducted under three typical terrain conditions(plains, forests, and mountains)demonstrate that the proposed method can accurately predict damage levels at various distances and terrains, with damage radius prediction errors maintained within 5%, significantly outperforming traditional static assessment methods.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-18
  • 最后修改日期:2025-11-24
  • 录用日期:2025-12-31
  • 在线发布日期:
  • 出版日期:
文章二维码