基于深度学习的计算机设备在线监测与故障诊断方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


On-line Monitoring and Fault Diagnosis Method of Computer Equipment Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对计算机设备运行故障检测,提出基于嵌入式技术检测方法。利用无线传感器采集计算机设备运行数据,构建MobileNet-SSD网络模型,通过卷积层与Batch Normalization层的融合实现构建网络模型的改进,采用剪枝微调优化方法保证剪枝前模型信息保留剪枝后模型,将其移植到嵌入式设备中,将获取的3个故障特征量作为模型输入,完成计算机设备运行故障检测。实验结果表明:该方法能够完成计算机设备故障特征量的提取、获取设备故障检测结果;收敛速率快、训练损失低于0.01;可实现故障检测模型的压缩,参数量下降明显,mAP指标波动 较小。

    Abstract:

    In view of the fault detection of computer equipment, a detection method based on embedded technology is proposed. Acquire operation data of computer equipment by utilize a wireless sensor, constructing a MobileNet-SSD network model, realizing that improvement of the constructed network model through the fusion of a convolution lay and a Batch Normalization layer, ensuring that model information before pruning is reserved by adopting a pruning fine-tuning optimization method, transplanting the pruned model to embedded equipment, The three fault characteristic quantities are used as the input of the model to complete the operation fault detection of the computer equipment. The experimental results show that the method can complete the extraction of computer equipment fault features and obtain equipment fault detection results; the convergence rate is fast, and the training loss is less than 0.01; the compression of fault detection model can be realized, the number of parameters decreases significantly, and the fluctuation of mAP index is small.

    参考文献
    相似文献
    引证文献
引用本文

李懿琼.基于深度学习的计算机设备在线监测与故障诊断方法[J].,2025,44(11).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-07
  • 最后修改日期:2024-11-17
  • 录用日期:
  • 在线发布日期: 2025-12-02
  • 出版日期:
文章二维码