基于多尺度通道注意力的噪声图像分割方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Noisy Image Segmentation Method Based on Multi-scale Channel Attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高噪声图像的分割效果和性能,提出一种基于多尺度通道注意力的噪声图像分割方法。以图像的像素点为单位,构建噪声图像的灰度模型。引入偏移场理论构建噪声图像的局部分割模型。基于Heaviside阶跃函数构建噪声图像的全局能量函数,得到噪声图像的灰度偏移场模型。将残差连接添加到多尺度通道注意力模块中,对噪声图像特征的3条通道进行池化处理和融合处理,提取出噪声图像不同尺度的特征,实现噪声图像分割。实验结果表明:该方法可保留噪声图像的边缘特征,提高图像分割的精度和信噪比。

    Abstract:

    In order to improve the segmentation effect and performance of noisy images, a noisy image segmentation method based on multi-scale channel attention is proposed. A gray model of the noise image is constructed by taking a pixel point of the image as a unit. The bias field theory is introduced to construct a local segmentation model for noisy images. The global energy function of the noise image is constructed based on the Heaviside step function, and the gray offset field model of the noise image is obtained. The residual connection is added to the multi-scale channel attention module, and the three channels of the noise image features are pooled and fused to extract the features of different scales of the noise image and realize the noise image segmentation. Experimental results show that the method can preserve the edge features of noisy images and improve the accuracy and signal-to-noise ratio of image segmentation.

    参考文献
    相似文献
    引证文献
引用本文

杨东宁.基于多尺度通道注意力的噪声图像分割方法[J].,2025,44(11).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-08
  • 最后修改日期:2024-11-15
  • 录用日期:
  • 在线发布日期: 2025-12-02
  • 出版日期:
文章二维码