结合多尺度特征提取和注意力机制的NLP数据处理模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

南方电网公司科技项目(GDKJXM20230480)


NLP Data Processing Model Combining Multi-scale Feature Extraction and Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决自然语言数据处理模型进行数据处理时存在效果差、资源消耗大等问题,提出一种基于多尺度特征提取和注意力机制的融合算法。通过不同尺度的特征数据提取,并在特征图上应用加权算法,从而增强对某些特定尺度特征的关注,并基于该融合算法对自然语言数据处理模型进行优化。仿真实验的结果表明:该融合算法特征提取效果较好,显著提升了计算机进行数据处理的各项能力。将优化后的自然语言处理(natural language processing,NLP)数据处理模型与CSAMT数据处理模型、BETG数据处理模型和优化前的NLP数据处理模型的性能进行对比可知:经过CBAM-MS-CNN优化的NLP数据处理模型的各项性能均优于其他模型。研究结果表明:该融合算法可以满足电子化移交流程中非结构化数据管理领域中的高可靠性、智能处理等业务需求,能提升数据处理效率和数据质量,减少人工录入数据和人工复核数据的工作量。

    Abstract:

    In order to solve the problems of poor data processing effect and large resource consumption in natural language data processing model, a fusion algorithm based on multi-scale feature extraction and attention mechanism is proposed. Through the feature data extraction of different scales and the application of weighting algorithm on the feature map, the attention to some specific scale features is enhanced, and the natural language data processing model is optimized based on the fusion algorithm. The results of simulation experiments show that the feature extraction effect of the fusion algorithm is better, and the ability of computer data processing is significantly improved. Comparing the performance of the optimized natural language processing (NLP) data processing model with CSAMT data processing model, BETG data processing model and NLP data processing model before optimization, it can be seen that the performance of the NLP data processing model optimized by CBAM-MS-CNN is better than other models. The research results show that the fusion algorithm can meet the business requirements of high reliability and intelligent processing in the field of unstructured data management in the electronic transfer process, improve data processing efficiency and data quality, and reduce the workload of manual input data and manual review data.

    参考文献
    相似文献
    引证文献
引用本文

杜家兵.结合多尺度特征提取和注意力机制的NLP数据处理模型[J].,2025,44(10).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-05
  • 最后修改日期:2024-11-15
  • 录用日期:
  • 在线发布日期: 2025-12-02
  • 出版日期:
文章二维码