基于混合深度学习的微电网检测模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Microgrid Detection Model Based on Hybrid Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决目前微电网保护方案存在计算时间长、故障检测精度低的问题,提出一种基于混合深度学习的微电网故障检测模型。通过特征提前器挖掘电力数据信号信息,利用深度卷积神经网络有效提取电力故障数据特征信息,并基于AdaBoost分类器对故障进行分类。实验结果表明:与卷积神经网络(convolutional neural network,CNN)和AlexNet相反,所提混合深度学习检测模型训练性能更高;与SVM、LR、CNN和AlexNet模型相比,所提混合深度学习模型综合指标性能更优,故障检测准确率可达98%。

    Abstract:

    In order to solve the problems of long computation time and low fault detection accuracy in current microgrid protection schemes, a microgrid fault detection model based on hybrid deep learning is proposed. The feature advancer is used to mine the signal information of power data, and the deep convolutional neural network is used to effectively extract the feature information of power fault data, and the AdaBoost classifier is used to classify the fault. Experimental results show that, contrary to the convolutional neural network (CNN) and AlexNet, the proposed hybrid deep learning detection model has higher training performance; Compared with SVM, LR, CNN and AlexNet models, the proposed hybrid deep learning model has better comprehensive index performance, and the fault detection accuracy can reach 98%.

    参考文献
    相似文献
    引证文献
引用本文

吴方权.基于混合深度学习的微电网检测模型[J].,2025,44(10).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-09
  • 最后修改日期:2024-11-12
  • 录用日期:
  • 在线发布日期: 2025-12-02
  • 出版日期:
文章二维码