基于深度学习的电子发票异常行为检测模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Abnormal Behavior Detection Model of Electronic Invoice Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对电子发票流通过程中产生的异常行为趋于多样化和复杂化等特点,提出一种基于深度学习的电子发票异常行为检测模型。对用户消费中某些敏感信息进行加工并聚类处理,建立异常行为特征数据集;提出一种结合双线性投影及注意机制的深度网络学习企业消费数据,并在网络中引入注意增强双线性层(bilinear layer,BL)模型,提高模型训练效率;以某财务公司提供的企业开具发票行为数据为例,对所提检测模型的有效性进行验证。结果表明:所提模型性能最高,平均识别准确率为93.25%;与ResNet、VGG和LSTM模型相比,准确率分别提升6.6%、6.42%和5.27%。

    Abstract:

    In view of the characteristics that the abnormal behaviors generated in the circulation of electronic invoices tend to be diversified and complicated, this paper proposes an electronic invoice abnormal behavior detection model based on deep learning. Some sensitive information in user consumption is processed and clustered to establish a data set of abnormal behavior characteristics. A deep network learning enterprise consumption data combined with bilinear projection and attention mechanism is proposed, and an attention-enhanced bilinear layer (BL) model is introduced into the network to improve the training efficiency of the model. The validity of the proposed detection model is verified by the data of enterprise invoicing behavior provided by a financial company. The results show that the proposed model has the highest performance, and the average recognition accuracy is 93.25%; compared with ResNet, VGG and LSTM models, the accuracy is improved by 6.6%, 6.42% and 5.27%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

王 岩.基于深度学习的电子发票异常行为检测模型[J].,2025,44(10).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-07
  • 最后修改日期:2024-11-08
  • 录用日期:
  • 在线发布日期: 2025-12-02
  • 出版日期:
文章二维码