基于规则引擎与深度学习的电网防误操作方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国南方电网有限责任公司科技项目(046000KK52222030)


Misoperation Prevention Method of Power Grid Based on Rule Engine and Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决现有防误策略忽略了电网操作的多维度指标、且无法对潜在的误操作进行防范的问题,提出一种基于规则引擎与深度学习的电网多层次多维度防误操作智能判别方法。通过规则引擎驱动的误操作识别方法,充分考虑命令执行、设备状态和人员操作行为等维度,将最小完美哈希表筛除无用事件,提高识别效率,基于混合深度学习的多层次潜在误操作识别方法,深入分析处理历史操作数据,识别出潜在的误操作模式,还能对规则引擎的规则库进行有效的补充和更新,提升系统的自动化水平。仿真结果表明,相比于2个对比算法,所提方法能够将误操作识别成功率提高2.10%和3.06%。

    Abstract:

    In order to solve the problem that the existing anti-misoperation strategy ignores the multi-dimensional indicators of power grid operation and can not prevent potential misoperation, a multi-level and multi-dimensional anti-misoperation intelligent discrimination method for power grid based on rule engine and deep learning is proposed. Through the rule engine-driven misoperation identification method, taking full account of the dimensions of command execution, equipment status and personnel operation behavior, the minimum perfect hash table is screened out of useless events to improve the identification efficiency, and the multi-level potential misoperation identification method based on hybrid in-depth learning is used to analyze and process historical operation data in depth and identify potential misoperation. It can also effectively supplement and update the rule base of the rule engine, and improve the automation level of the system. The simulation results show that the proposed method can increase the success rate of misoperation recognition by 2.10% and 3.06% compared with the two comparison algorithms.

    参考文献
    相似文献
    引证文献
引用本文

罗添允.基于规则引擎与深度学习的电网防误操作方法[J].,2025,44(09).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-13
  • 最后修改日期:2024-10-28
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码