面向机场测试环境下的多传感器紧耦合SLAM方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Multi-sensor Tightly Coupled SLAM Method for Airport Test Environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对机场测试环境下仅利用激光雷达无法精确定位的问题,提出一种基于因子图优化的紧耦合多传感器同时定位与地图构建(simultaneous localization and mapping,SLAM)方法。利用边特征点和面特征点并结合两步优化策略进行点云特征匹配,再采用滑动窗口消除全球导航卫星系统(global navigation satellite system,GNSS)数据异常值,并在点云稀疏环境下和机器人方位变化超过20°时增量加入GNSS因子。在机场辅助路和较为空旷的机场跑道对LeGO-LOAM、LIO-SAM方法和该方法进行对比验证,结果表明,该方法在机场辅助路环境中的轨迹绝对误差比LeGO-LOAM、LIO-SAM方法分别降低了15.426和0.211 m;加入GNSS因子后,精度提升至厘米级(RMSEAPE= 0.050 m);在机场跑道环境中,该方法的轨迹较为平滑,无偏移问题,且精度达到厘米级(RMSEAPE=0.063 m)。

    Abstract:

    Aiming at the problem that accurate positioning cannot be achieved by using only lidar in airport test environment, a tightly coupled multi-sensor simultaneous localization and mapping (SLAM) method based on factor graph optimization is proposed. The edge feature points and the surface feature points are combined with the two-step optimization strategy to match the point cloud features, and then the sliding window is used to eliminate the outliers of the global navigation satellite system (GNSS) data, and the GNSS factor is added incrementally when the point cloud is sparse and the robot azimuth changes more than 20°. The LeGO-LOAM, LIO-SAM and this method are compared and verified in the airport auxiliary road and the relatively empty airport runway. The results show that the absolute error of the trajectory of this method in the airport auxiliary road environment is 15.426 and 0.211 m lower than that of LeGO-LOAM and LIO-SAM respectively. After adding the GNSS factor, the accuracy is improved to centimeter level (RMSEAPE =0.050 m); in the airport runway environment, the trajectory of this method is relatively smooth, without offset problem, and the accuracy reaches centimeter level (RMSEAPE=0.063 m).

    参考文献
    相似文献
    引证文献
引用本文

祝大程.面向机场测试环境下的多传感器紧耦合SLAM方法[J].,2025,44(09).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-20
  • 最后修改日期:2024-10-21
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码