基于知识图谱嵌入的音乐主题推荐算法优化算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Optimization of Music Theme Recommendation Algorithm Based on Knowledge Graph Embedding
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对音乐推荐领域面临的多源异构数据整合困难、语义关联挖掘不充分以及个性化推荐精度不足等问题,提出一种融合知识图谱与深度学习的推荐算法。通过动态爬虫技术和UIE智能抽取框架构建多维度音乐数据体系,采用“语义计算+词形匹配”的双重融合策略实现知识图谱的精准构建。引入TransR模型进行知识图谱的深度语义嵌入,并结合用户历史行为特征构建“内容-行为”双通道推荐模型。实验结果表明:该算法在推荐准确性、排序合理性和用户满意度等关键指标上均显著优于现有推荐算法,研究成果不仅为音乐推荐提供了新的技术路径,而且验证了知识图谱在提升推荐系统可解释性方面的独特作用。

    Abstract:

    In order to solve the problems in the field of music recommendation, such as the difficulty of multi-source heterogeneous data integration, insufficient semantic association mining and insufficient accuracy of personalized recommendation, a recommendation algorithm based on knowledge mapping and deep learning is proposed. Through dynamic crawler technology and UIE intelligent extraction framework, a multi-dimensional music data system is constructed, and the precise construction of knowledge map is realized by using the dual integration strategy of "semantic computing + word form matching". The TransR model is introduced to embed the deep semantics of knowledge map, and the "content-behavior" dual-channel recommendation model is constructed based on the user's historical behavior characteristics. The experimental results show that the proposed algorithm is significantly superior to the existing recommendation algorithms in the key indicators of recommendation accuracy, ranking rationality and user satisfaction, and the research results not only provide a new technical path for music recommendation, but also verify the unique role of knowledge mapping in improving the interpretability of recommendation systems.

    参考文献
    相似文献
    引证文献
引用本文

刘灵凡.基于知识图谱嵌入的音乐主题推荐算法优化算法[J].,2025,44(09).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-21
  • 最后修改日期:2024-10-19
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码