某扫雷器的模糊神经网络控制
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Fuzzy Neural Network Control of Certain Type Mine Sweeper
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对爆破扫雷器电液伺服系统参数不确定、时变性等问题,利用模糊控制鲁棒性和神经网络自适应能力强的特点,设计模糊控制与神经网络相结合的控制策略。建立扫雷器电液伺服系统的数学模型,分析模糊神经网络控制器的结构,采用遗传算法和共轭梯度法优化学习算法;在Simulink中建立控制系统模型,对比传统PID控制器、模糊神经网络控制器和遗传算法与共轭梯度优化的模糊神经网络控制器性能。仿真结果表明:优化后的控制器具有较快的响应速度、较强的鲁棒性与稳定性。

    Abstract:

    Aiming at the problems of parameters uncertainty and time variability of electro-hydraulic servo system of mine sweeping device, a control strategy combining fuzzy control and neural network is designed by using the characteristics of strong robustness of fuzzy control and strong adaptive ability of neural network. The mathematical model of mine sweeper electro-hydraulic servo system is established, the structure of fuzzy neural network controller is analyzed, and the genetic algorithm and conjugate gradient method are used to optimize the learning algorithm; the control system model is established in Simulink, and the performance of traditional PID controller, fuzzy neural network controller and fuzzy neural network controller optimized by genetic algorithm and conjugate gradient is compared. The simulation results show that the optimized controller has fast response speed, strong robustness and stability.

    参考文献
    相似文献
    引证文献
引用本文

李 勃.某扫雷器的模糊神经网络控制[J].,2025,44(08).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-14
  • 最后修改日期:2024-10-16
  • 录用日期:
  • 在线发布日期: 2025-09-08
  • 出版日期:
文章二维码