基于机器学习的涉密终端违规外联自动检测系统
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Automatic Detection System for Violation of Secret Terminal Based on Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为保证电力系统中涉密终端的数据传输安全,设计基于机器学习的涉密终端违规外联自动检测系统。采用机器学习技术构建检测系统框架,按照多个阶层实现违规外联的涉密信息过滤;划分违规外联主要方式,通过模块化松耦合模式统一违规外联监测接口;以聚类算法获取涉密信息聚类中心,按照非线性映射关系划分终端违规外联数据类型;基于机器学习计算信息增益率,以特征信息熵为基础自动检测涉密终端违规外联。以3组涉密终端作为测试对象,在多种违规外联方式下验证检测系统的应用效果。结果表明:该系统可实现快速阻断,且具有较高的查全率和查准率,保证涉密信息的安全性。

    Abstract:

    In order to ensure the security of data transmission of classified terminals in power system, an automatic detection system for illegal external connection of classified terminals based on machine learning is designed. Constructing a detection system framework by adopting a machine learning technology, and filtering secret-related information of violation outreach according to a plurality of levels; dividing a main violation outreach mode, and unifying a violation outreach monitoring interface through a modularized loose coupling mode; acquiring a secret-related information clustering center by a clustering algorithm, and dividing a terminal violation outreach data type according to a nonlinear mapping relationship; The information gain rate is calculated based on machine learning, and the illegal outreach of the secret-related terminal is automatically detected based on the feature information entropy. Taking three groups of classified terminals as the test objects, the application effect of the detection system is verified in a variety of illegal outreach modes. The results show that the system can achieve rapid blocking, and has a high recall rate and precision rate to ensure the security of classified information.

    参考文献
    相似文献
    引证文献
引用本文

钱 锦.基于机器学习的涉密终端违规外联自动检测系统[J].,2025,44(08).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-13
  • 最后修改日期:2024-10-14
  • 录用日期:
  • 在线发布日期: 2025-09-08
  • 出版日期:
文章二维码