基于增强元学习与注意力机制的民机故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Civil Aircraft Fault Diagnosis Based on Reinforcement Meta-learning and Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对民机机械部件故障样本缺乏且类不平衡以及故障信号复杂多样导致的故障诊断精度低,识别不稳定的问题,提出基于增强元学习与通道注意力机制(learn to reweight with SE-1DleNet,LRS)的故障诊断方法。利用小样本平衡验证集指导了不平衡训练集的损失权重更新以改善原始不均衡样本分布,提出元梯度增强的梯度裁剪策略;在1D-LeNet的基础上引入SE注意力机制对多维度故障特征通道自适应加权。结果表明:以民机大梁和机械轴承故障作为仿真试验数据集,与当前主流的故障诊断算法ProtoNet、DNCNN、GAN-CNN等相比,该方法诊断效果最优,在样本极端不平衡时准确率达95%以上,能够进行准确故障诊断。

    Abstract:

    In order to solve the problem of low accuracy and unstable recognition of fault diagnosis caused by the lack of fault samples of civil aircraft mechanical components and their imbalanced classes, as well as the complexity and diversity of fault signals, a fault diagnosis method based on enhanced meta-learning and channel attention mechanism is proposed. The balanced validation set of small samples is used to guide the updating of the loss weight of the imbalanced training set to improve the distribution of the original imbalanced samples, and the gradient pruning strategy of meta-gradient enhancement is proposed. On the basis of 1D-LeNet, the SE attention mechanism is introduced to adaptively weight the multi-dimensional fault feature channels. The results show that compared with the current mainstream fault diagnosis algorithms such as ProtoNet, DNCNN and GAN-CNN, the proposed method has the best diagnosis effect, and the accuracy is more than 95% when the samples are extremely unbalanced, capable of accurate fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

李易健.基于增强元学习与注意力机制的民机故障诊断[J].,2025,44(07).

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-10
  • 最后修改日期:2024-10-20
  • 录用日期:
  • 在线发布日期: 2025-08-28
  • 出版日期:
文章二维码