基于机器学习预测的高温绝热压缩空气储能系统智能调控系统
DOI:
CSTR:
作者:
作者单位:

东南大学能源与环境学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Intelligent control system for high-temperature adiabatic compressed air energy storage system based on machine learning prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决高温绝热压缩空气储能系统经常在非设计工况下运行导致的系统效率难以预测,且系统放电能力具有很强的不确定性的问题,设计了基于机器学习预测的高温绝热压缩空气储能系统智能调控系统,该系统根据输入的电网负荷指令,预测系统储气盐穴出口压力,调节系统盐气换热器熔盐流量、水气换热器水流量与空气流量等内部参数,使机组达到最大的系统效率。该系统具有高效特点,能有效提升电网对可再生能源的消纳能力,符合当下的节能减排需求。

    Abstract:

    In order to overcome the difficulty to predict the system efficiency of high temperature adiabatic compressed air energy storage system and the uncertainty of discharge capacity of the system, an intelligent control system for the energy storage system based on machine learning prediction is designed. According to the input grid load command, the system predicts the outlet pressure of the gas storage salt cavern, and adjusts the internal parameters, including molten salt flow of the system salt gas heat exchanger, water flow and air flow of the water gas heat exchanger, so as to reach the maximum system efficiency of the unit. The device is compact and efficient, which can effectively improve the capacity of the power grid to absorb renewable energy and meet the current demand for energy conservation and carbon emission reduction.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-08
  • 最后修改日期:2025-07-08
  • 录用日期:2025-07-08
  • 在线发布日期:
  • 出版日期:
文章二维码