低分辨率激光图像边缘修复视觉传达方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Visual Communication Method for Low-resolution Laser Image Edge Repair
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对低分辨率激光图像边缘容易受到噪声干扰,而导致图像边缘的临界可见偏差较低问题,提出基于多视图融合与双边滤波的低分辨率激光图像边缘修复方法。构建低分辨率激光图像的双边滤波降噪模型,通过深度置信度测量的方法融合多视图,提取图像边缘特征分布集,采用深度图模型参数融合处理方法构建图像的视觉传达模型,根据先验边缘和纹理信息,实现图像边缘修复,并根据相关性自适应寻优。实验结果表明:采用该方法能有效修复图像边缘,将图像边缘的临界可见偏差均值提高到28.90%,提高了图像边缘人眼可感知点的像素点数量,且结构相似度均值达到0.981,均方根误差仅为0.004 9,峰值信噪比达到了49.1 dB,运行时间均值为4.8 s,提高了图像边缘修复效果,减少了运行时间。

    Abstract:

    In order to solve the problem that the edge of low-resolution laser image is easily disturbed by noise, which leads to a low critical visible deviation of the image edge, a low-resolution laser image edge inpainting method based on multi-view fusion and bilateral filtering is proposed. The bilateral filtering denoising model of low-resolution laser image is constructed, and the distribution set of image edge features is extracted by fusing multiple views through the method of depth confidence measurement. The visual communication model of the image is constructed by using the fusion processing method of depth map model parameters, and the image edge repair is realized according to the prior edge and texture information, and the adaptive optimization is carried out according to the correlation. The experimental results show that the proposed method can effectively restore the image edge, the average of the critical visible deviation of the image edge is increased to 28.90%, the number of pixels of the image edge that can be perceived by human eyes is increased, the average of the structural similarity is 0.981, the root mean square error is only 0.004 9, and the peak signal to noise ratio is 49.1 dB. The average running time is 4.8 s, which improves the effect of image edge inpainting and reduces the running time.

    参考文献
    相似文献
    引证文献
引用本文

黄起才.低分辨率激光图像边缘修复视觉传达方法[J].,2025,44(06).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-16
  • 最后修改日期:2024-09-21
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码