基于BP神经网络的石油化工设备故障点位置检测系统
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Fault Location Detection System of Petrochemical Equipment Based on BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为保证设备的安全运行,提高石油开采的效率,基于BP神经网络对石油化工设备故障点位置检测进行研究。以BP神经网络构建检测系统框架,石油化工设备的运行全过程设计脉冲编码模块,构建电压隔离电路和测频电路。软件部分,以BP神经网络构建数学模型,通过激活函数与加权法计算坐标位置,实现设备故障点的位置检测。实验以3组不同类型的石油化工设备作为测试对象,分别从噪声条件和距离条件的设定中检测故障点位置。结果表明:该系统具有较高的检测精度,可应用在复杂的石油工程中,具有应用价值。

    Abstract:

    In order to ensure the safe operation of equipment and improve the efficiency of oil exploitation, the fault location detection of petrochemical equipment based on BP neural network is studied. The BP neural network is used to construct the framework of the detection system, the pulse coding module is designed for the whole operation process of the petrochemical equipment, and the voltage quarantine circuit and frequency measurement circuit are constructed. In the software part, the BP neural network is used to construct the mathematical model, and the coordinate position is calculated by the activation function and the weighted method to realize the position detection of the equipment fault point. In the experiment, three groups of different types of petrochemical equipment were used as test objects, and the fault location was detected from the setting of noise conditions and distance conditions respectively. The results show that the system has high detection accuracy and can be used in complex petroleum engineering.

    参考文献
    相似文献
    引证文献
引用本文

姜 力.基于BP神经网络的石油化工设备故障点位置检测系统[J].,2025,44(06).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-10
  • 最后修改日期:2024-09-15
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码