基于分布式机器学习算法的科研审计系统安全漏洞识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省科技计划项目(2020B1010010005);广东省科技专项资金项目(210901164532767)


Security Vulnerability Identification Method of Scientific Research Audit System Based On Distributed Machine Learning Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决科研审计系统存在安全性较差、精确率和召回率较低等问题,设计一种基于分布式机器学习算法的科研审计系统安全漏洞识别方法。采集科研审计系统用户数据,对用户节点数据进行分簇,并引入k近邻算法(k-nearest neighbor,KNN)概念建立科研审计系统网络分布式结构模型,将具有代表性和多样性的安全漏洞特征进行组合并分类,基于分布式机器学习算法在实际应用中进行安全漏洞识别。通过2种传统的安全漏洞识别方法进行对比。结果表明:该方法可以识别不同类型的安全漏洞,且准确率、精确率和召回率都有提高。

    Abstract:

    In order to solve the problems of poor security, low precision and recall rate in scientific research audit system, a security vulnerability identification method of scientific research audit system based on distributed machine learning algorithm is designed. Collecting the user data of the scientific research audit system, clustering the user node data, introducing the concept of the k-nearest neighbor (KNN) algorithm to establish a network distributed structure model of the scientific research audit system, and combining and classifying the security vulnerability characteristics with representativeness and diversity. Based on distributed machine learning algorithm, security vulnerability identification is carried out in practical application. Two traditional security vulnerability identification methods are compared. The results show that the method can identify different types of security vulnerabilities, and the accuracy, precision and recall are improved.

    参考文献
    相似文献
    引证文献
引用本文

李俊奕.基于分布式机器学习算法的科研审计系统安全漏洞识别方法[J].,2025,44(06).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-21
  • 最后修改日期:2024-09-25
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码