基于轻量级Fast-Unet网络的绝缘子图像分割方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Insulator Image Segmentation Based on Lightweight Fast-Unet Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为快速查找图像中绝缘子缺陷,降低电力事故的发生几率,基于轻量级Fast-Unet网络设计一种绝缘子图像分割算法。对绝缘子航拍图像进行预处理,使其实现重构归一化,通过转换图像元素,计算元素共生概率,从而获取图像的颜色、纹理、形状特征;细化通道空间信息特征值,组成一个初始的网络结构,生成分割结果树状图;通过计算图像的模块度和相对模块度,建立轻量级Fast-Unet网络分割模型。实验结果表明:该分割算法在无噪声图像中的综合质量平均值为0.72,在简单背景和复杂背景图像中的综合质量平均值分别为0.57和0.46,可见降噪处理对图像分割的质量起到了正向作用。

    Abstract:

    In order to quickly find the insulator defects in the image and reduce the probability of power accidents, an insulator image segmentation algorithm is designed based on the lightweight Fast-Unet network. The method comprises the following steps of preprocessing an aerial image of an insulator to realize reconstruction and normalization; calculating the element symbiosis probability by converting image elements so as to obtain the color, texture and shape characteristics of the image; refining the channel space information characteristic value to form an initial network structure and generate a segmentation result dendrogram. By calculating the modularity and relative modularity of the image, a lightweight Fast-Unet network segmentation model is established. The experimental results show that the average comprehensive quality of the proposed algorithm is 0.72 in noise-free images, and 0.57 and 0.46 in simple and complex background images, respectively. Therefore, denoising has a positive effect on the quality of image segmentation.

    参考文献
    相似文献
    引证文献
引用本文

袁新平.基于轻量级Fast-Unet网络的绝缘子图像分割方法[J].,2025,44(06).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-05
  • 最后修改日期:2024-09-10
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码