基于注意力机制的中医实体关系抽取模型
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Model of TCM Entity Relation Extraction Based on Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对中医实体关系复杂和多样导致实体关系抽取不佳的问题,提出一种基于注意力机制与多模型融合的关系抽取模型(r-BERT-BiLSTM-attention-textCNN,RBBAT)。该模型由关系抽取预训练模型(r-BERT)、双向长短期记忆神经网络(BiLSTM)、注意力层(Attention)和TextCNN 4部分组成;实验选取近年来各个医案平台上公开的消化科相关医案,针对症状-病名、症状-证候、舌象-证候、脉象-证候、证候-治法5个实体关系进行关系抽取。实验结果表明:该模型与常用的关系抽取模型相比较,在症状-病名、症状-证候、舌象-证候、证候-治法4种实体关系上的抽取能力达到最优。

    Abstract:

    In order to solve the problem of poor entity relation extraction caused by the complexity and diversity of entity relations in traditional Chinese medicine (TCM), a relation extraction model (r-BERT-BiLSTM-attention-textCNN, RBBAT) based on attention mechanism and multi-model fusion is proposed. The model is composed of relation extraction pre-training model (r-BERT), bidirectional long/short-term memory neural network (BiLSTM), Attention layer and TextCNN; In the experiment, the relevant medical records of the department of gastroenterology published on various medical record platforms in recent years were selected, and five entity relationships were extracted, including symptom-disease name, symptom-syndrome, tongue-syndrome, pulse-syndrome, and syndrome-treatment. The experimental results show that compared with several commonly used relation extraction models, the proposed fusion model has the best extraction ability in the four entity relations of symptom-disease name, symptom-syndrome, tongue picture-syndrome, and syndrome-treatment method.

    参考文献
    相似文献
    引证文献
引用本文

李旻哲.基于注意力机制的中医实体关系抽取模型[J].,2025,44(06).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-10
  • 最后修改日期:2024-09-25
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期:
文章二维码