基于局部反距离-卡尔曼融合算法的化学污染预测方法
DOI:
CSTR:
作者:
作者单位:

中国兵器装备集团自动化研究所有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:


Chemical Pollution Prediction Method Based on the Local Inverse Distance-Kalman Fusion Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高化学污染物浓度预测模型的准确性和可靠性,引入基于局部反距离-卡尔曼融合算法的数据同化技术进行优化。引入局部反距离算法对观测数据进行数据插值,增加观测点数据密度;采用卡尔曼滤波对观测数据和模拟数据进行数据同化,从而实现化学污染物浓度的预测。实验结果显示:选定的7个监测点位置同化前后污染物浓度相对误差均降低,其中监测点2的相对误差降幅最大,由8667%降低至4445%;监测点5的相对误差降幅最低,由176%降低至171%,验证了该技术的可行性

    Abstract:

    To enhance the accuracy and reliability of the chemical pollutant concentration prediction model, data assimilation technology based on the ?local inverse distance-Kalman fusion algorithm? was introduced for optimization. The local inverse distance algorithm was employed to ?interpolate observation data?, thereby increasing the density of observation points. Subsequently, the Kalman filter was applied for ?data assimilation? between the observed data and simulated data to achieve chemical pollutant concentration prediction. Experimental results demonstrate that: the ?relative error? of pollutant concentration decreased at all seven selected monitoring points after assimilation. Specifically, monitoring point 2 exhibited the ?largest reduction in relative error?, decreasing from 8667% to 4445%. Monitoring point 5 showed the ?smallest reduction?, decreasing from 176% to 171%. These results ?validate the feasibility? of this technique.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-04
  • 最后修改日期:2025-07-01
  • 录用日期:2025-06-13
  • 在线发布日期:
  • 出版日期:
文章二维码