基于时域卷积融合注意力机制的光伏功率预测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东电网有限公司科技项目(030200KK52222038)


Photovoltaic Power Prediction Method Based on Time-domain Convolutional Fusion Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对偏远地区军事系统光伏功率数据的复杂性以及现有光伏预测模型的精度低问题,提出一种基于时域卷积融合注意力机制的光伏功率预测方法。首先,利用皮尔逊相关系数识别主要变量作为输入序列,通过模糊C均值算法(fuzzy C-means,FCM)相似日聚类将光伏功率数据划分为平稳、波动、突变3种类型以提高预测模型精确度;然后,采用自适应噪声完备集经验模态(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)分解方法对光伏功率进行分解,并根据排列熵进行重构。通过时域卷积网络(temporal convolutional network,TCN)作为时空特征提取层,并且嵌入高效通道注意力机制(efficient channel attention,ECA)单元增强卷积网络的的特征捕获能力;最后,通过双向长短期记忆网络(bidirectional long short term memory,BiLSTM)进行预测,输出功率预测结果。实验结果表明:所提出的模型具有较高的预测精度,能有效预测不同功率变化趋势下光伏出力情况。

    Abstract:

    Aiming at the complexity of PV power data of military systems in remote areas and the low accuracy of existing PV prediction models, a PV power prediction method based on time-domain convolution fusion attention mechanism is proposed. Firstly, the main variables identified by Pearson correlation coefficient are used as the input sequence, and the photovoltaic power data are divided into three types of stationary, fluctuating and abrupt by fuzzy C-means (FCM) similar day clustering to improve the accuracy of the prediction model; Then, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) decomposition method is used to decompose the photovoltaic power. And reconstruct according to that permutation entropy. A temporal convolutional network (TCN) is used as a spatio-temporal feature extraction layer, and an efficient channel attention (ECA) mechanism unit is embedded to enhance the feature capture capability of the convolutional network; Finally, a bidirectional long short term memory (BiLSTM) network is used to predict the output power. The experimental results show that the proposed model has high prediction accuracy and can effectively predict the PV output under different power variation trends.

    参考文献
    相似文献
    引证文献
引用本文

沈炳华.基于时域卷积融合注意力机制的光伏功率预测方法[J].,2025,44(05).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-12
  • 最后修改日期:2024-09-02
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码