基于改进多目标离散狼群算法的目标分配
DOI:
CSTR:
作者:
作者单位:

中国航空工业集团公司西安飞行自动控制研究所

作者简介:

通讯作者:

中图分类号:

V249;TP273.5

基金项目:


Research on Target Assignment Based on Improved Multi-objective Discrete Wolf Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多机协同空战目标分配问题,为得到多样性较好的目标分配方案集,提出了一种改进多目标离散狼群算法(MODWPA-SS)。首先,建立了目标分配多目标优化模型;其次,采用Harmonic距离计算Pareto最优解的拥挤度来选取头狼组,引入小狼群概念对召唤与围攻行为做出改进,以提高目标分配方案集的多样性与搜索能力;设计了自适应步长执行狼群搜索,提高了局部的搜索能力与跳出局部的能力,并改善了参数设置多的问题;最后改进了狼群算法的更新机制以去除劣解。仿真结果表明, MODWPA-SS相较于多目标离散狼群算法(MODWPA)运行时间少42.6%、解间距少36.2%,单目标最优解质量更好,验证了改进算法在目标分配多目标优化上的有效性和更好的综合性能。

    Abstract:

    An improved multi-objective discrete wolf swarm algorithm (MODWPA-SS) is proposed to solve the target assignment problem in multi-aircraft cooperative air combat. Firstly, a multi-objective optimization model of target assignment is established. Secondly, the harmonic distance is used to calculate the crowding degree of Pareto optimal solution to select the first wolf group, and the concept of wolf swarm is introduced to improve the calling and encirclement behavior to improve the diversity and searching ability of the target allocation scheme set. The adaptive step size is designed to perform wolf swarm search, which improves the ability of local searching and jumping out of part, and improves the problem of many parameter settings. At last, the updating mechanism of wolf swarm algorithm is improved to remove the bad solution. The simulation results show that MODWPA-SS has 42.6% less running time, 36.2% less solution interval and better quality of single-objective optimal solution than MODWPA (Multi-Objective Discrete Wolf Colony Algorithm), which proves the effectiveness and better comprehensive performance of MODWPA-SS in target assign-ment multi-objective optimization.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-20
  • 最后修改日期:2025-05-27
  • 录用日期:2025-06-03
  • 在线发布日期:
  • 出版日期:
文章二维码