贝叶斯网络在钻井设备系统故障诊断中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Application of Bayesian Network in Fault Diagnosis of Drilling Equipment System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低钻井设备在作业过程中出现故障的概率,提出贝叶斯网络(Bayesian networks,BN)在钻井设备系统故障诊断中的应用研究。采用基于遗传算法的条件概率表检索算法改进贝叶斯网络;通过条件概率表描述改进贝叶斯网络中的随机变量以及网络内节点间连接关系,明确网络结构与节点参数,构建改进贝叶斯网络模型;通过计算系统可靠度,定量分析系统设备故障对系统运行可靠性影响,构建包含历史故障种类、历史数据库、故障发生时的运行参数的训练学习样本库,将其作为改进贝叶斯网络模型输入,实现钻井设备系统故障诊断。实验结果表明:该方法可精准诊断钻井设备系统设的故障类型,其故障诊断结果可为系统后期维护提供数据支撑。

    Abstract:

    In order to reduce the failure probability of drilling equipment in the process of operation, the application of Bayesian networks (BN) in fault diagnosis of drilling equipment system is proposed. A conditional probability table retrieval algorithm based on a genetic algorithm is adopted to improve the Bayesian network, random variables in the improved Bayesian network and connection relations among nodes in the network are described through the conditional probability table, a network structure and node parameters are defined, and an improved Bayesian network model is constructed; By calculating the system reliability and quantitatively analyzing the influence of the system equipment failure on the system operation reliability, a training and learning sample base containing historical failure types, a historical database and the operation parameters when the failure occurs is constructed, and the training and learning sample base is used as the input of the improved Bayesian network model to realize the fault diagnosis of the drilling equipment system. The experimental results show that the method can accurately diagnose the fault type of the drilling equipment system, and the fault diagnosis results can provide data support for the later maintenance of the system.

    参考文献
    相似文献
    引证文献
引用本文

李胜忠.贝叶斯网络在钻井设备系统故障诊断中的应用[J].,2025,44(05).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-10
  • 最后修改日期:2024-09-20
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码