基于粒子群算法优化BP神经网络的森林降水量预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Forest Precipitation Prediction Based on BP Neural Network Optimized by Particle Swarm Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对森林降水量预测传统方法的缺点,提出粒子群算法优化BP神经网络森林降水量预测方法。将2020—2022年森林降水量作为数据集进行对比实验,实验证明PSO-BP神经网络算法相较于LSTM模型和传统的BP神经网络,误差明显降低,预测精度更高,同时训练集和测试集提升了5%~11%,降低了泛化误差,适用于数据量较大的森林降水量预测。结果表明,该方法为后续森林降水量预测提供新的思路和方法。

    Abstract:

    In view of the shortcomings of the traditional forest precipitation prediction method, a forest precipitation prediction method based on BP neural network optimized by particle swarm algorithm is proposed. Taking the forest precipitation from 2020 to 2022 as a data set for comparative experiments, the experimental results show that compared with the LSTM model and the traditional BP neural network, the PSO-BP neural network algorithm has a significant degree of error reduction and higher prediction accuracy. At the same time, the training set and test set are improved by 5%~11%, which reduces the generalization error and is suitable for forest precipitation prediction with large amount of data. The results show that this method provides a new idea and method for the subsequent forest precipitation prediction.

    参考文献
    相似文献
    引证文献
引用本文

于万荣.基于粒子群算法优化BP神经网络的森林降水量预测[J].,2025,44(05).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-10
  • 最后修改日期:2024-09-11
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码