基于迁移学习和RBF神经网络的小子样产品性能参数预测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Prediction Method of Performance Parameters of Small Sample Products Based on Transfer Learning and RBF Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对小子样产品预测模型不够精确的问题,提出一种产品性能参数预测方法。在径向基函数(radial basis function,RBF)神经网络学习算法的基础上,加入迁移学习的思想,将小子样产品自身的历史测试数据和同型号同批次其他产品的测试数据当作源领域知识来充分学习,弥补当前领域因已标签样本数据少而导致的产品性能参数预测精度差的问题。结果表明,该方法的预测精度较高。

    Abstract:

    Aiming at the problem that the prediction model of small sample product is not accurate enough, a prediction method of product performance parameters is proposed. Based on the learning algorithm of radial basis function (RBF) neural network, the idea of transfer learning is added, and the historical test data of small sample products and the test data of other products with the same model and batch are fully learned as the source domain knowledge, which makes up for the problem of poor prediction accuracy of product performance parameters caused by the lack of labeled sample data in the current field. The results show that the prediction accuracy of this method is high.

    参考文献
    相似文献
    引证文献
引用本文

毛廷鎏.基于迁移学习和RBF神经网络的小子样产品性能参数预测方法[J].,2025,44(05).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-02
  • 最后修改日期:2024-09-20
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码