基于深度神经网络的数字水表识别与应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

内蒙古自治区自然科学基金(2020MS06008)


Recognition and Application of Digital Water Meter Based on Deep Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高水务公司对居民用水量的管理,提出一种基于深度神经网络模型的数字式水表读数检测和识别方法。在原始DBNet网络模型的基础上对特征提取网络进行改进,将特征提取网络ResNet网络替换成DPN双路径特征提取网络;使用透视变换算法对倾斜的读数区域图像进行校正;采用YOLOv5s网络模型对读数区域中的若干个数字进行识别;通过水表识别应用系统将读数结果进行显示,完成水表图像实时检测与识别的功能。实验结果表明:YOLOv5s网络模型具有较好的鲁棒性,能够准确识别出遮挡、模糊以及双半字符数字,识别准确率高达99.1%。

    Abstract:

    In order to improve the water company's management of residential water consumption, a digital water meter reading detection and recognition method based on deep neural network model is proposed. The feature extraction network is improved on the basis of the original DBNet network model, the feature extraction network ResNet network is replaced by the DPN double-path feature extraction network, the perspective transformation algorithm is used to correct the inclined reading area image, the YOLOv5s network model is used to recognize a plurality of digits in the reading area; The reading results are displayed by the water meter recognition application system, and the function of real-time detection and recognition of water meter images is completed. The experimental results show that the YOLOv5s network model has good robustness, and can accurately identify the occlusion, blur and double-half digits, and the recognition accuracy is as high as 99.1%.

    参考文献
    相似文献
    引证文献
引用本文

包 霞.基于深度神经网络的数字水表识别与应用[J].,2025,44(05).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-10
  • 最后修改日期:2024-09-15
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码