基于电网协同业务场景的数据全链路检测研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Data Full Link Detection Based on Power Grid Collaboration Business Scenario
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为对电网协同业务场景中的数据全链路进行入侵检测,基于深度学习设计了全连接神经网络-决策树算法。对电网协同业务场景中存在问题产生的原因进行分析,对常见的分类算法进行介绍;将深度学习中的全连接神经网络和机器学习的决策树算法进行结合,得到所设计的全连接神经网络-决策树入侵检测算法模型。通过在相关数据上测试,该模型在网络入侵中的检测精准率可达0.99,精度可达0.984,召回率为0.97,F1分数为0.977。结果表明:该算法与同类算法相比优势突出,为电网协同业务场景中的数据全链路提供了更精准的技术支撑,对于电网规划具有重要的优化作用。

    Abstract:

    Based on deep learning, a fully connected neural network-decision tree algorithm is designed for intrusion detection of full data link in power grid collaborative business scenarios. This paper analyzes the causes of the problems in the power grid collaborative business scenario, and introduces the common classification algorithms. It combines the fully connected neural network in deep learning with the decision tree algorithm in machine learning, and obtains the designed fully connected neural network-decision tree intrusion detection algorithm model. Through the test on the relevant data, the detection accuracy of the model in network intrusion can reach 0.99, the precision can reach 0.984, the recall rate is 0.97, and the F1 score is 0.977. The results show that compared with similar algorithms, the proposed algorithm has outstanding advantages, provides more accurate technical support for the full data link in the grid collaborative business scenario, and plays an important role in the optimization of power grid planning.

    参考文献
    相似文献
    引证文献
引用本文

谢 辉.基于电网协同业务场景的数据全链路检测研究[J].,2025,44(05).

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-15
  • 最后修改日期:2024-09-12
  • 录用日期:
  • 在线发布日期: 2025-06-10
  • 出版日期:
文章二维码