基于粒子群和蜂群算法的无人机路径规划
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

武警后勤学院理论研究项目(WHL202307)


UAV Path Planning Based on Particle Swarm Optimization and Artificial Bee Colony Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particle swarm optimization,PSO)和人工蜂群(artificial bee colony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径,使得到的路径更加平滑,无人机机动转弯相对更少。结果表明:该研究提高了无人机飞行的安全性和高效性,便于无人机的飞行控制跟踪实现。

    Abstract:

    A hybrid algorithm based on particle swarm optimization (PSO) and artificial bee colony (ABC) is proposed for 2D and 3D path planning of unmanned aerial vehicle (UAV) in threatening battlefield environment. According to the characteristic that B-spline can modify the local flight trajectory, the non-uniform B-spline curve is introduced to optimize the path at the inflection point, so that the obtained path is smoother and the UAV maneuvers are relatively less. The results show that the research improves the safety and efficiency of UAV flight, and is convenient for the realization of UAV flight control and tracking.

    参考文献
    相似文献
    引证文献
引用本文

刘晓芬.基于粒子群和蜂群算法的无人机路径规划[J].,2025,44(04).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-13
  • 最后修改日期:2024-09-15
  • 录用日期:
  • 在线发布日期: 2025-05-06
  • 出版日期:
文章二维码