基于无建图的强化学习人工势场法编队
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Artificial Potential Field Formation Method Based on Reinforcement Learning without Graph Construction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对同步定位与建图(simultaneous localization and mapping,SLAM)技术对计算资源的高需求、有限环境适应性、累积误差问题、系统复杂度高、成本昂贵、大场景处理能力受限以及缺乏有效的回环检测机制的缺点,提出一种结合人工势场法和深度强化学习的方法。利用图论模拟人工势场在机器人间的相互作用以及机器人与目的地之间的势场力,并采用孪生延迟深度确定性策略梯度(twin delayed deep deterministic policy gradient,TD3)算法来优化机器人对障碍物信息的感知和处理。仿真试验结果表明:该方法使机器人能够在未知环境中快速、准确地进行定位、移动,同时维持队形的稳定性和一致性。

    Abstract:

    For simultaneous localization and mapping (SLAM) technology has the disadvantages of high demand for computing resources, limited environmental adaptability, cumulative error problem, high system complexity, high cost, limited large scene processing capacity and lack of effective loop detection mechanism, so a method combining artificial potential field method and deep reinforcement learning is proposed. The graph theory is used to simulate the interaction between robots and the potential force between robots and the destination, and the twin delayed deep deterministic policy gradient algorithm is used to optimize the robot's perception and processing of obstacle information. The simulation results show that the method can make the robot locate and move quickly and accurately in the unknown environment, while maintaining the stability and consistency of the formation.

    参考文献
    相似文献
    引证文献
引用本文

丁 磊.基于无建图的强化学习人工势场法编队[J].,2025,44(04).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-10
  • 最后修改日期:2024-09-10
  • 录用日期:
  • 在线发布日期: 2025-05-06
  • 出版日期:
文章二维码