基于次优解搜索算法的输电线路监测优化方法研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Transmission Line Monitoring Optimization Method Based on Suboptimal Solution Search Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决现有输电线路监测时成本高、通信时延和动态调整计算时间长等问题,提出一种基于物联网的架空输电线路监测系统。建立考虑广域和非广域通信的输电线路通信模型和基于伦琴衰减的输电线路信道模型;考虑成功传输率、延迟和鲁棒性等通信服务质量,建立架空输电线路非线性整数规划优化模型;提出一种寻找次优解算法,根据网络图中输电塔之间信道质量的变化近实时计算优化解。实验阶段,与最优化方法相比,所提模型较A*和遗传算法等路径决策算法的计算时间更优,分别缩短10倍和2.25倍。结果表明,所提系统为架空输电线路的连续监测时动态热额定值、实时结构感知和精确故障定位提供重要的数据支撑。

    Abstract:

    In order to solve the problems of high cost, communication delay and long dynamic adjustment calculation time in the existing transmission line monitoring, an overhead transmission line monitoring system based on the Internet of Things (IoT) is proposed. A transmission line communication model considering wide area and non-wide area communication and a transmission line channel model based on roentgen attenuation are established; a nonlinear integer programming optimization model of the overhead transmission line is established by considering communication service quality such as successful transmission rate, delay, robustness and the like; and a suboptimal solution finding algorithm is proposed, and an optimal solution is calculated in near real time according to the change of the channel quality between transmission towers in a network graph. In the experimental stage, compared with the optimization method, the computing time of the proposed model is better than that of the path decision algorithms such as A * and genetic algorithm, which is 10 times and 2.25 times shorter, respectively. The results show that the proposed system provides important data support for dynamic thermal rating, real-time structure sensing and accurate fault location of overhead transmission lines during continuous monitoring.

    参考文献
    相似文献
    引证文献
引用本文

王 帅.基于次优解搜索算法的输电线路监测优化方法研究[J].,2025,44(04).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-10
  • 最后修改日期:2024-09-07
  • 录用日期:
  • 在线发布日期: 2025-05-06
  • 出版日期:
文章二维码