基于LSTM和贝叶斯网络的枪械交验合格率预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Prediction of Firearms Acceptance Rate Based on LSTM and Bayesian Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为准确定位影响成枪一次交验合格率的关键加工环节,选取贝叶斯网络构建加工参数与合格率之间的因果模型。通过选取长短期记忆(long short-term memory,LSTM)神经网络模型作为成枪一次交验合格率的时间序列预测模型,能较准确地预测下一批次的成枪一次交验合格率,进一步定位到关键加工环节。结果表明,该预测可为下一步有针对性地改进生产工艺提供理论参考。

    Abstract:

    In order to accurately locate the key processing links affecting the pass rate of the first delivery of the finished gun, the Bayesian network is selected to construct a causal model between the processing parameters and the pass rate. By selecting the long short-term memory (LSTM) neural network model as the time series prediction model for the pass rate of the first delivery of guns, the pass rate of the first delivery of guns in the next batch can be predicted more accurately, and the key processing links can be further located. The results show that the prediction can provide a theoretical reference for the next targeted improvement of the production process.

    参考文献
    相似文献
    引证文献
引用本文

王宪升.基于LSTM和贝叶斯网络的枪械交验合格率预测[J].,2025,44(04).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-09
  • 最后修改日期:2024-09-18
  • 录用日期:
  • 在线发布日期: 2025-05-06
  • 出版日期:
文章二维码