基于RBFSMC车载武器行进间稳定控制
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Moving Stability Control of Vehicular Weapon Based on RBFSMC
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对某车载机关炮行进间射击会受到一系列非线性因素的影响,设计一种基于RBF神经网络的滑模控制策略。基于滑模控制强鲁棒性的特点,通过一种实时扰动观测器精确观测扰动,利用RBF神经网络在非线性函数逼近方面的独特优势来逼近系统的不确定项,设计自适应律来保证系统的渐进稳定性;通过RBF神经网络动态调节切换增益,进一步抑制产生的抖振问题,抑制参数变化和外界扰动等非线性因素的影响。仿真结果表明:与常规的滑模控制相比,该控制策略可有效提高车载机关炮系统的稳定控制精度。

    Abstract:

    A sliding mode control strategy based on RBF neural network was designed in order to solve the problem that the on-road firing of a vehicle-mounted machine gun would be affected by a series of nonlinear factors. Based on the strong robustness of sliding mode control, a real-time disturbance observer is used to accurately observe the disturbance, and the unique advantage of RBF neural network in nonlinear function approximation is used to approximate the uncertainties of the system, and an adaptive law is designed to ensure the asymptotic stability of the system. The switching gain is dynamically adjusted by RBF neural network to further suppress the chattering problem and the influence of nonlinear factors such as parameter change and external disturbance. The simulation results show that compared with the conventional sliding mode control, the proposed control strategy can effectively improve the stability control precision of the vehicle-mounted gun system.

    参考文献
    相似文献
    引证文献
引用本文

李佳帅.基于RBFSMC车载武器行进间稳定控制[J].,2025,44(04).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-19
  • 最后修改日期:2024-09-10
  • 录用日期:
  • 在线发布日期: 2025-05-06
  • 出版日期:
文章二维码