基于遗传-贪心算法的两栖突击编队波次筹划模型研究
DOI:
CSTR:
作者:
作者单位:

南京理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Wave Planning Model for Amphibious Assault Formations Based on Genetic-Greedy Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对两栖突击编队波次投送筹划中多约束强耦合导致的求解难题,提出了一种基于“波次分配-装载分配”双层规划模型的投送方案筹划方法。分析两栖突击编队波次投送方案筹划问题特点,厘清筹划需求;建立筹划总体模型,基于双层规划思路,分别建立波次分配模型和装载分配模型;针对上层波次分配模型,改进应用遗传算法,提出引导变异算子,提高算法全局搜索能力;针对下层装载分配模型,设计启发策略,提高贪心算法求解效率;最终形成两栖突击编队波次投送方案筹划完整方法。结合两栖突击编队投送典型场景,采用AnyLogic系统进行仿真验证,结果表明:规划方法具有可操作性,结果具有合理性,对两栖突击编队波次投送决策有参考意义。

    Abstract:

    In response to the problem of solving difficulties caused by multi-constraints and strong coupling in the planning of echelon delivery for amphibious assault formations, a planning method based on a “wave allocation-loading allocation” bi-level programming model is proposed. The characteristics of the planning problem of echelon delivery for amphibious assault formations are analyzed to clarify the planning requirements. A general planning model is established, and based on the bi-level programming idea, wave allocation and loading allocation models are respectively established. For the upper-level wave allocation model, the genetic algorithm is improved by proposing a guiding mutation operator to enhance the global search capability of the algorithm. For the lower-level loading allocation model, heuristic strategies are designed to improve the solving efficiency of the greedy algorithm. Finally, a complete method for planning the echelon delivery of amphibious assault formations is formed. Combined with typical scenarios of echelon delivery for amphibious assault formations, the AnyLogic system is used for simulation verification. The results show that the planning method is feasible and the results are reasonable, which has reference significance for the decision-making of echelon delivery of amphibious assault formations.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-01
  • 最后修改日期:2025-04-10
  • 录用日期:2025-04-23
  • 在线发布日期:
  • 出版日期:
文章二维码