基于混合蛙跳算法城市多目标土地利用空间优化配置方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


City Multi-objective Land Use Space Optimize Allocation Method Based on Shuffled Frog Leaping Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为保障城市土地利用合理性与环境友好性,提出一种城市多目标土地利用空间优化配置方法。利用混合蛙跳算法在多目标求解问题方面的优势,以城市土地新开发与已开发用地距离最小、城市土地单元用地间环境因素不兼容性最小为目标函数的约束条件,构建基于混合蛙跳算法的城市多目标土地利用空间优化配置模型。将城市用地栅格作为操作基本单元,引入首尾排除分组、智能学习与变异算子等改进混合蛙跳算法,获取城市多目标土地利用空间优化配置模型最优解。实验结果表明:该方法对城市土地进行优化配置后,环境兼容性几乎全在0.5以上,并且大部分接近1。可较好地实现城市多目标土地利用空间优化配置,效率较高,优化配置后土地资源的节约性与环境兼容性也较好。

    Abstract:

    In order to ensure the rationality and environmental friendliness of urban land use, a multi-objective spatial optimal allocation method of urban land use was proposed. Taking advantage of the advantage of shuffled frog leaping algorithm (SFLA) in solving multi-objective problems, a spatial optimal allocation model of urban multi-objective land use was constructed based on SFLA, with the minimum distance between the newly developed land and the developed land and the minimum incompatibility of environmental factors between urban land units as the constraint conditions of the objective function. Taking the urban land grid as the basic unit of operation, the improved shuffled frog leaping algorithm, such as head and tail exclusion grouping, intelligent learning and mutation operator, is introduced to obtain the optimal solution of the urban multi-objective land use spatial optimization allocation model. The experimental results show that the environmental compatibility is almost above 0.5, and most of them are close to 1 after the optimal allocation of urban land. It can better realize the optimal allocation of urban multi-objective land use space with high efficiency, and the conservation and environmental compatibility of land resources after optimal allocation are also better.

    参考文献
    相似文献
    引证文献
引用本文

李思滢.基于混合蛙跳算法城市多目标土地利用空间优化配置方法[J].,2025,44(03).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-01
  • 最后修改日期:2024-08-20
  • 录用日期:
  • 在线发布日期: 2025-04-14
  • 出版日期:
文章二维码