多策略改进麻雀搜索算法的无人车路径规划
DOI:
CSTR:
作者:
作者单位:

沈阳化工大学机械与动力工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Improved Sparrow Search Algorithm for Unmanned Vehicle
Author:
Affiliation:

School of Mechanical and Power Engineering, Shenyang University of Chemical Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决麻雀搜索算法应用于无人车路径规划中存在寻优精度不足、寻优效率低和易陷入局部最优的问题,提出一种多策略改进麻雀搜索算法。通过引入二次复合混沌映射对初期种群进行初始化操作,丰富种群多样性;在发现者的位置更新方式中融入基于Logistic函数的自适应惯性权重机制,以平衡算法的全局搜索与局部搜索能力;通过引入非线性扰动因子的正余弦算法对追随者位置更新进行改进,增强算法寻优速度和寻优精度,提升跳出局部最优的能力。实验结果表明,改进麻雀搜索算法在寻优精度和和寻优效率方面均实现了显著的优化效果,验证了其在无人车路径规划中的有效性。

    Abstract:

    To address the limitations of the Sparrow Search Algorithm (SSA) in autonomous vehicle path planning, such as insufficient optimization accuracy, low efficiency, and susceptibility to local optima, an Improved Sparrow Search Algorithm (ISSA) is proposed. This approach initializes the population using a quadratic compound chaotic map to enhance initial population diversity. An adaptive inertia weight mechanism based on the Logistic function is integrated into the position update of discoverers to balance global and local search capabilities. Additionally, a nonlinear perturbation factor-based cosine algorithm is introduced to improve the position update of followers, enhancing the search speed and accuracy, and improving the ability to escape local optima. Experimental results demonstrate significant optimization effects in terms of both optimization accuracy and efficiency, validating the effectiveness of the ISSA in autonomous vehicle path planning.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-11
  • 最后修改日期:2024-12-11
  • 录用日期:2024-12-16
  • 在线发布日期:
  • 出版日期:
文章二维码