室内光照变化下视觉SLAM优化方法
DOI:
CSTR:
作者:
作者单位:

四川轻化工大学

作者简介:

通讯作者:

中图分类号:

TP242.6

基金项目:

四川省科技厅(2024YFFK0220)。


Optimization Methods for Visual SLAM under Indoor Illumination Variations
Author:
Affiliation:

Sichuan University of Science Engineering

Fund Project:

Sichuan Provincial Department of Science and Technology(2024YFFK0220)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统视觉SLAM存在由于室内光照条件变化而导致鲁棒性低等问题,提出一种基于图像增强与神经网络的视觉SLAM优化方法。该方法对原始ORB-SLAM2框架进行改进,并在其相机跟踪线程中加入一种RAH-GCNv2特征点提取方法。RAH-GCNv2方法对图像RGB通道进行均衡处理,调节视觉信息色偏现象,对图像HSV通道进行自适应增强,调节亮度问题。通过GCNv2特征点提取网络,获取分布均匀且分散的特征点,并在公开数据集上进行实验验证。实验结果表明,在欠曝与过曝条件下,所提改进方法使采集图像的标准差增加5倍,熵值增加50%,图像平均梯度增加5倍。将RAH-GCNv2特征点提取方法融入ORB-SLAM2框架后,相机运动轨迹误差比原始ORB-SLAM2框架降低30%,且不会出现位姿丢失等问题。实际测试表明,修正了原始ORB-SLAM2框架在弱纹理场景中出现的轨迹漂移问题,建图效果得到明显改善。

    Abstract:

    Aiming at the problems such as low robustness caused by the changes of indoor lighting conditions in traditional visual SLAM, an optimized visual SLAM method based on image enhancement and neural network is proposed. This method makes improvements on the original ORB-SLAM2 framework by incorporating a RAH-GCNv2 feature point extraction method into its camera tracking thread. The RAH-GCNv2 method performes equalization processing on the RGB channels of the image to adjust the visual information color bias phenomenon, and conductes adaptive enhancement on the HSV channels of the image to adjust the brightness issue. Through the GCNv2 feature point extraction network, uniformly distributed and scattered feature points were obtained, and experimental verification was carried out on public datasets. The experimental results showed that under underexposure and overexposure conditions, the proposed improved method increased the standard deviation of the captured images by 5 times, the entropy value by 50%, and the average gradient of the images by 5 times. After integrating the RAH-GCNv2 feature point extraction method into the ORB-SLAM2 framework, the camera motion trajectory error was reduced by 30% compared with the original ORB-SLAM2 framework, and problems such as pose loss did not occur. The actual test showed that the trajectory drift problem of the original ORB-SLAM2 framework in weakly textured scenes was corrected, and the mapping effect was significantly improved.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-11
  • 最后修改日期:2024-12-16
  • 录用日期:2024-12-18
  • 在线发布日期:
  • 出版日期:
文章二维码