基于时域卷积融合注意力机制的光伏功率预测方法
DOI:
CSTR:
作者:
作者单位:

1.广东电网有限责任公司韶关乐昌供电局;2.南京信息工程大学

作者简介:

通讯作者:

中图分类号:

TM732

基金项目:

广东电网有限公司科技项目(030200KK52222038) 江苏省研究生科研与实践创新计划项目基金(SJCX24_0465)


Photovoltaic power prediction method based on time-domain convolutional fusion attention mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对偏远地区军事系统光伏功率数据的复杂性以及现有光伏预测模型的低精度问题,本文提出了一种基于时域卷积融合注意力机制的光伏功率预测方法。首先,利用皮尔逊相关系数识别主要变量作为输入序列。同时,通过FCM相似日聚类将光伏功率数据划分为平稳、波动、突变三种类型以提高预测模型精确度。其次,采用ICEEMDAN分解方法对光伏功率进行分解,并根据排列熵进行重构。然后,通过TCN作为时空特征提取层,并且嵌入ECA单元增强卷积网络的的特征捕获能力。最后,通过BiLSTM进行预测,输出功率预测结果。实验结果表明,本文所提出的模型具有较高的预测精度,有效预测不同功率变化趋势下光伏出力情况。

    Abstract:

    In response to the complexity of photovoltaic power data in remote military systems and the low accuracy of existing models, this paper proposes a photovoltaic power prediction method based on ICEEMDAN and TCN-ECA-BiLSTM. First, the Pearson correlation coefficient is used to identify key variables as input sequences. Meanwhile, the photovoltaic power data is classified into stable, fluctuating, and abrupt types through FCM (Fuzzy C-Means) similarity day clustering. Next, the ICEEMDAN decomposition method is applied to decompose the photovoltaic power data, which is then reconstructed based on permutation entropy. Then, TCN (Temporal Convolutional Network) is used as a spatiotemporal feature extraction layer, with an embedded ECA (Efficient Channel Attention) unit to enhance the feature capture ability of the convolutional network. Finally, BiLSTM (Bidirectional Long Short-Term Memory) is employed for prediction, and the output is obtained. Experimental results demonstrate that the proposed model achieves high prediction accuracy and can effectively predict photovoltaic output under various power change trends.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-03
  • 最后修改日期:2025-01-16
  • 录用日期:2025-01-22
  • 在线发布日期:
  • 出版日期:
文章二维码