模型与数据联合驱动的高校教育信息化水平综合评价研究
DOI:
CSTR:
作者:
作者单位:

1.北部湾大学;2.北部湾大学 教育学院

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金(U1811263);广西教育厅教学改革研究项目(2022JGB273)


Integrated Assessment of the Level of Education Informatization Driven by Model and Data
Author:
Affiliation:

College of Education,Beibu Gulf University,Qinzhou

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前高校教育信息化水平综合评价问题中模型驱动方法评价不全面、数据驱动方法中评价值的确定依赖人工经验且信度难保证等问题,本文融合模型与数据驱动,通过优化最小二乘支持向量机算法(LSSVM),提出一种结合结构方程和LSSVM的方法,对高校教育信息化水平进行评价。首先,利用结构方程获取高校教育信息化水平评价值。其次,利用LSSVM构建高校教育信息化指标与水平之间的评估模型,并用精英质心和反向学习策略改进的樽海鞘群算法对LSSVM参数进行优化。最后,通过陕西省教育厅收集的高校教育信息化建设调查问卷数据对所提算法的预测精度和计算效率进行验证。实验表明:本文所提的模型与数据联合驱动评价方式平均误差最小,为1.13%,较其他算法分别下降1.27%、3.03%和7.40%,最大样本偏差也仅为4.23%,运行时间也仅需3.21 s,较其他算法分别缩短了42.88%和19.63%,具有较高的预测精度与计算效率,对高校教育信息化水平综合评价有一定的借鉴作用。

    Abstract:

    Aiming at the problems that the model-driven method is incomplete in the comprehensive evaluation of university education informatization level, and the determination of evaluation value in data-driven method depends on artificial experience and reliability is difficult to guarantee, this paper fuses model-driven and data-driven, a method combining structural equation and LSSVM by optimizing the least squares support vector machine (LSSVM) algorithm is proposed to evaluate the higher education informatization level. Firstly, the structural equation was used to obtain the evaluation value of educational informatization level in colleges and universities. Secondly, LSSVM is used to construct the evaluation model between the indicators and levels of university education informatization, and the parameters of LSSVM are optimized by the salp swarm algorithm improved by elite centroid and opposition-based learning strategy. Finally, the prediction accuracy and computational efficiency of the proposed algorithm are verified by the questionnaire data of university education informatization construction collected by Shaanxi Provincial Education Department. Experiments show that: The model and data jointly driven evaluation method proposed has the smallest average error of 1.13%. It is 1.27%, 3.03% and 7.40% lower than other algorithms, respectively. The maximum sample deviation is only 4.23%, and the running time is only 3.21 s, it is 42.88% and 19.63% shorter than other algorithms, respectively. It has high prediction accuracy and calculation efficiency. It has certain reference for the comprehensive evaluation of educational informationization level in colleges and universities.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-22
  • 最后修改日期:2024-11-25
  • 录用日期:2024-11-29
  • 在线发布日期:
  • 出版日期:
文章二维码