基于改进遗传算法优化BP网络的密度预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Density Prediction of BP Networks Based on Improved Genetic Algorithm Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了能利用工艺参数实时预测药柱密度并提高密度预测精度,提出采用改进遗传算法优化BP网络(improved genetic algorithm backpropagation neural network,IGA-BPNN)的炸药密度预测模型。通过动态调整GA的交叉概率和变异概率,确定BPNN权重和阈值的最优值,构建IGA-BP预测模型,利用采集的工艺参数,基于所构建模型进行炸药密度预测。实验结果表明:改进的GA对交叉率和变异率做出了更好的调整,能快速搜寻BPNN的最优权重和阈值,提高炸药压制密度的预测精度。

    Abstract:

    In order to predict the density of explosive column in real time and improve the prediction accuracy, an improved genetic algorithm was used to optimize the BP network (improved genetic algorithm backpropagation neural network, IGA-BPNN) model for predicting explosive density. By dynamically adjusting the crossover probability and mutation probability of GA, the optimal values of BPNN weights and thresholds were determined, and the IGA-BP prediction model was constructed to predict the explosive density based on the collected process parameters. The experimental results show that the improved GA makes a better adjustment to the crossover rate and mutation rate, can quickly search the optimal weight and threshold of BPNN, and improve the prediction accuracy of explosive pressing density.

    参考文献
    相似文献
    引证文献
引用本文

史慧芳.基于改进遗传算法优化BP网络的密度预测[J].,2024,43(11).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-18
  • 最后修改日期:2024-07-26
  • 录用日期:
  • 在线发布日期: 2024-11-26
  • 出版日期:
文章二维码