基于多特征的雾状气体泄漏视觉检测方法
DOI:
CSTR:
作者:
作者单位:

南京航空航天大学

作者简介:

通讯作者:

中图分类号:

基金项目:

中央高校基本科研业务费专项资金资助(NJ2024012)


Multi-feature based visual detection of misty gas leakage
Author:
Affiliation:

Nanjing University of Aeronautics and Astronautics

Fund Project:

the Fundamental Research Funds for the Central Universities(NJ2024012)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决可见光雾状气体泄漏样本数据稀缺、针对性特征缺乏情况下的泄漏检测问题,研究基于多特征的雾状气体泄漏视觉检测方法。利用雾状气体泄漏前后图像特征差异,设计包含透射率、相合度、均匀度的像素级雾状气体泄漏特征。结合支持向量机的决策机制和指数平滑思想,引入置信度优化、平滑因子约束集成算法权值,构建自适应雾状气体泄漏分类模型,实现可见光图像中雾状气体泄漏状态的准确判定。在典型泄漏场景对该方法展开验证的结果表明:该方法能较好地判定气体泄漏状态,成功率达到95%以上,单帧平均耗时约为35 ms,满足了检测实时性要求。

    Abstract:

    In order to solve the problem of leakage detection in the case of scarce visible foggy gas leakage sample data and lack of targeted features, a multi-feature based visual detection method for foggy gas leakage is investigated. Using the differences in image features before and after fog gas leakage, pixel-level fog gas leakage features including transmittance, coherence and uniformity are designed. Combining the decision-making mechanism of support vector machine and the idea of exponential smoothing, we introduce confidence optimization and smoothing factor constraints to integrate the weights of the algorithm, construct an adaptive foggy gas leakage classification model, and realize the accurate determination of the foggy gas leakage state in the visible light image. The results of the validation of the method in a typical leakage scenario show that the method can better determine the gas leakage state, with a success rate of more than 95%, and the average time consumed for a single frame is about 35 ms, which meets the real-time requirements of detection.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-15
  • 最后修改日期:2025-01-02
  • 录用日期:2024-11-29
  • 在线发布日期:
  • 出版日期:
文章二维码