基于多特征的雾状气体泄漏视觉检测方法
DOI:
CSTR:
作者:
作者单位:

南京航空航天大学

作者简介:

通讯作者:

中图分类号:

基金项目:

中央高校基本科研业务费专项资金资助(NJ2024012)


Multi-feature based visual detection of misty gas leakage
Author:
Affiliation:

Nanjing University of Aeronautics and Astronautics

Fund Project:

the Fundamental Research Funds for the Central Universities(NJ2024012)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    雾状气体泄漏检测在化工、航空等领域具有重要的研究意义。为了解决可见光雾状气体泄漏样本数据稀缺、针对性特征缺乏情况下的泄漏检测问题,开展基于多特征的雾状气体泄漏视觉检测方法的研究。利用雾状气体泄漏前后图像特征差异,设计包含透射率、相合度、均匀度的像素级雾状气体泄漏特征。结合支持向量机的决策机制和指数平滑思想,引入置信度优化、平滑因子约束集成算法权值,构建自适应雾状气体泄漏分类模型,实现可见光图像中雾状气体泄漏状态的准确判定。在典型泄漏场景对文中方法展开验证,结果表明所述方法能较好地判定气体泄漏状态,成功率达到95%以上,单帧平均耗时约为35ms,满足了检测实时性要求。

    Abstract:

    Misty gas leak detection was considered critical in fields such as chemical engineering and aviation. To address the problem of detecting leaks in visible-light images when misty gas leak data are scarce and specific features are lacking, a visual detection method based on multiple features was developed. Differences in image characteristics before and after a misty gas leak were analyzed, and pixel-level features including transmittance, coherence, and uniformity were designed to characterize the leak. The decision mechanism of support vector machine (SVM) was combined with exponential smoothing; confidence optimization and smoothing factor constraints were incorporated to weight the ensemble algorithm, forming an adaptive classification model for misty gas leaks. This model accurately determines misty gas leak states in visible-light images. Validations in typical leak scenarios show that this method effectively identifies gas leak status, achieving a success rate above 95% with an average processing time of around 35 ms per frame, meeting real-time detection requirements.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-15
  • 最后修改日期:2024-11-15
  • 录用日期:2024-11-29
  • 在线发布日期:
  • 出版日期:
文章二维码